Differenze tra le versioni di "Complementi di matematica"
(→Quarta lezione - 5 ottobre) |
|||
Riga 153: | Riga 153: | ||
:La funzione A è suriettiva se dim(Im(A)) = dim(W). Ricordo che V è una base del dominio e W del codominio. | :La funzione A è suriettiva se dim(Im(A)) = dim(W). Ricordo che V è una base del dominio e W del codominio. | ||
*il caso speciale dominio=codominio: iniettivita' equivalente a suriettivita'. | *il caso speciale dominio=codominio: iniettivita' equivalente a suriettivita'. | ||
+ | |||
+ | ===Spazi euclidei e calcolo vettoriale=== | ||
+ | ====Quinta lezione==== | ||
+ | Norma in spazi vettoriali reali | ||
+ | Norma Euclidea ||x||2 in Rn e sua giustificazione tramite teorema di Pitagora | ||
+ | Proprieta' della norma Euclidea: | ||
+ | *positivita' ed annullamento | ||
+ | *positiva omogeneita' | ||
+ | *disuguaglianza triangolare (senza dimostrazione, per il momento) | ||
+ | Assiomatizzazione del concetto di norma | ||
+ | Esempi di norme differenti in R2 | ||
+ | *norma del tassista ||(x,y)||1=|x|+|y| | ||
+ | *norma infinito ||(x,y)||∞=|x|+|y| | ||
+ | *geometria delle relative palle unitarie | ||
+ | Esempi di norme in altri spazi: | ||
+ | *norma Euclidea negli spazi di matrici | ||
+ | *norma del sup nelgi spazio di funzioni limitate | ||
+ | |||
+ | Prodotto scalare in uno spazio reale | ||
+ | Nozione di ortogonalita' tra vettori di Rn nella norma Euclidea: | ||
+ | *caratterizzazione ortogonalita' tramite teorema di Pitagora | ||
+ | *espressione in componenti dell'ortogonalita' | ||
+ | *definzione di prodotto scalare Euclideo | ||
+ | *ricostruzione norma Euclidea a partire dal prodotto scalare Euclideo | ||
+ | Proprieta' del prodotto scalare < , > e sua assiomatizzazione: | ||
+ | *simmetria: <x,y>=<y,x> per ogni x,y | ||
+ | *bilinearita' che nella prima componente si scrive; <ax+bz,y>=a<x,y>+b<z,y> per ogni scalare a,b ed ogni x,z,y | ||
+ | *positivita' ed annullamento: x≠0 implica <x,x>>0 | ||
+ | Norma associata ad un prodotto scalare: | ||
+ | *definizione ||x||2=<x,x> | ||
+ | *omogeneita', positivita' ed annullamento della norma | ||
+ | *disuguagliqanza di Schwarz e suo utlizzo per la disuguaglianza triangolare della norma | ||
+ | Non tutte le norme derivano da un prodototo scalare | ||
+ | *identita' del parallelogrammo e sue conseguenze | ||
+ | *il caso della norma del tassista |
Versione delle 17:56, 9 ott 2012
Indice
Edizione 2012-2013
Premessa: vista la completezza del sito in Ariel relativo al corso, ho pensato di inserire sul wiki consigli pratici allo studio della materia.
Richiami di algebra lineare
Prima lezione - 2 ottobre
Esempi di spazi vettoriali, reali e complessi con esibizione esplicita di basi:
- : operazioni algebriche e loro interpretazione geometrica; verifica concreta dell'indipendenza di k vettori
- come spazio vettoriale complesso di dimensione n e come spazio vettoriale reale di dimensione 2n
- : polinomi di grado minore od uguale a n nella variabile x
- matrici n x m
- funzioni da come esempio di spazio di dimensione infinita
Sottospazi vettoriali:
- definizione di sottospazio e chiusura ripsetto alle operazioni vettoriali
- esempi concreti di verifica con calcolo della dimensione e deteminazione di una base
La lezione si è occupata prevalentemente del paragrafo 2.2 delle dispense di P. Favro ed A. Zucco che si trovano sul sito del corso.
In particolar modo è importante sapere verificare se
- dati un insieme di vettori essi siano o meno indipendenti;
- dato un sottoinsieme di uno spazio vettoriale esso sia o meno un sottospazio vettoriale;
Seconda lezione - 3 ottobre
Somma di sottospazi Y,Z di X
- l'unione Y∪Z non e' in generale un sottospazio di X
- Y+Z come minimo sottospazio contenente Y∪Z
- consistenza di Y∩Z ed unicita' della decomposizione
- somma diretta di sottospazi
Per questa parte si può fare sempre riferimento al paragrafo 2.2, in particolare a quanto scritto nelle pagine 15-16.
Enti lineari in
- definizione parametrica di retta
- equazione cartesiana di una retta nel piano
- equazione cartesiana di un piano in
- equazione cartesiana di una retta in : non unicita'.
Fare riferimento a quanto scritto nei paragrafi 3.1 e 3.2. Per quanto riguarda l'equazione del piano in [1].
Terza lezione - 4 ottobre
Enti lineari in :
- definizione parametrica di piano k-dimensionale
- iperpiano = piano di codimensione 1
- esempio di iperpiano in e determinazione della sua equzione cartesiana
Operatori lineari:
- definizione ed esempi concreti di verifica
- esempio: sia
- Vogliamo sapere se la funzione B è una mappa lineare o meno; dobbiamo quindi vedere se rispetta l'additività e l'omogeneità.
- Testiamo la seconda nel seguente modo:
- dove
- Poichè non vale l'uguaglianza possiamo concludere che B non è una mappa lineare.
- Vediamo invece un caso in cui lo è:
- Testiamo l'omogeneità
- dove
- L'uguaglianza è vera; testiamo ora l'additività:
- Poichè l'uguaglianza è vera, possiamo dice che A è una mappa lineare dallo spazio vettoriale allo spazio vettoriale
- coniugio nel campo complesso C: R-lineare ma non C-lineare
- L'additività vale in ogni caso:
- Mentre l'omogeneità vale solo se
- Infatti se avremmo:
- matrice associata al coniugio, rispetto alla base reale {1, i}
- matrice associata al coniugio, rispetto alla base reale {1, 1+i}
Matrici associate ad un operatore lineare A : X → Y
Gli argomenti trattati da qui in poi sono spiegati chiaramente al paragrafo 2.8 per libro "Linear Algebra Done Wrong" di cui trovate il link sul sito del corso
- vettore delle componenti di x rispetto alla base V
- matrice associata ad A rispetto alle basi V in X e W in Y
- ricostruzione dell'azione di A a partire dalla matrice associata:
- matrice associata all'indentita': matrice del cambio di base
- cambio delle basi ed effetto sulla matrice associata:
Quarta lezione - 5 ottobre
Operatori astratti A:X→Y
- vettore delle componenti di x rispetto alla base V
- matrice associata ad A rispetto alle basi V in X e W in Y
- ricostruzione dell'azione di A a partire dalla matrice associata:
- matrice associata all'indentita': matrice del cambio di base
- cambio delle basi ed effetto sulla matrice associata:
Operatori lineari
- base canonica E
- proprieta' notevole della base canonica
- azione dell'operatore nelle basi canoniche:
- identificazione operatore-matrice nelle basi canoniche:
- esempi di calcolo della matrice rappresentativa in basi non canoniche
Tutti i punti sopra citati sono trattati nel paragrafo 2.8 del libro "Linear Algebra Done Wrong" di cui trovate il link sul sito del corso.
- immagine di un operatore e sua dimensione: rango di ogni matrice rappresentativa
- sia una qualsiasi mappa lineare, l'immagine di A è:
- La dimensione di è data dal rango della matrice rappresentativa di A:
- , dove V è base di e W è base di
- nucleo di un operatore e sua dimensione: numero colonne - rango di ogni matrice rappresentativa
- Il nucleo di un operatore (anche detto kernel) è:
- , dove con intendo il vettore nullo del codominio.
- caratterizzazione iniettivita'\suriettivita' tramite rango matrice rappresentativa
- Sia V uno spazio vettoriale e A un'applicazione lineare, allora dim(ker(A)) + dim((Im(A)) = dim(V);
- La funzione A è iniettiva se dim(Ker(A)) = 0, ovvero se ;
- La funzione A è suriettiva se dim(Im(A)) = dim(W). Ricordo che V è una base del dominio e W del codominio.
- il caso speciale dominio=codominio: iniettivita' equivalente a suriettivita'.
Spazi euclidei e calcolo vettoriale
Quinta lezione
Norma in spazi vettoriali reali Norma Euclidea ||x||2 in Rn e sua giustificazione tramite teorema di Pitagora Proprieta' della norma Euclidea:
- positivita' ed annullamento
- positiva omogeneita'
- disuguaglianza triangolare (senza dimostrazione, per il momento)
Assiomatizzazione del concetto di norma Esempi di norme differenti in R2
- norma del tassista ||(x,y)||1=|x|+|y|
- norma infinito ||(x,y)||∞=|x|+|y|
- geometria delle relative palle unitarie
Esempi di norme in altri spazi:
- norma Euclidea negli spazi di matrici
- norma del sup nelgi spazio di funzioni limitate
Prodotto scalare in uno spazio reale Nozione di ortogonalita' tra vettori di Rn nella norma Euclidea:
- caratterizzazione ortogonalita' tramite teorema di Pitagora
- espressione in componenti dell'ortogonalita'
- definzione di prodotto scalare Euclideo
- ricostruzione norma Euclidea a partire dal prodotto scalare Euclideo
Proprieta' del prodotto scalare < , > e sua assiomatizzazione:
- simmetria: <x,y>=<y,x> per ogni x,y
- bilinearita' che nella prima componente si scrive; <ax+bz,y>=a<x,y>+b<z,y> per ogni scalare a,b ed ogni x,z,y
- positivita' ed annullamento: x≠0 implica <x,x>>0
Norma associata ad un prodotto scalare:
- definizione ||x||2=<x,x>
- omogeneita', positivita' ed annullamento della norma
- disuguagliqanza di Schwarz e suo utlizzo per la disuguaglianza triangolare della norma
Non tutte le norme derivano da un prodototo scalare
- identita' del parallelogrammo e sue conseguenze
- il caso della norma del tassista