Complementi di matematica

Da WikiDsy.
Versione del 7 ott 2012 alle 20:25 di Mattiie (discussione | contributi) (Prima lezione - 2 ottobre)

Edizione 2012-2013

Premessa: vista la completezza del sito in Ariel relativo al corso, ho pensato di inserire sul wiki consigli pratici allo studio della materia.

Richiami di algebra lineare

Prima lezione - 2 ottobre

Esempi di spazi vettoriali, reali e complessi con esibizione esplicita di basi:

  • R_{n}: operazioni algebriche e loro interpretazione geometrica; verifica concreta dell'indipendenza di k vettori
  • C_{n} come spazio vettoriale complesso di dimensione n e come spazio vettoriale reale di dimensione 2n
  • P_{n}[x]: polinomi di grado minore od uguale a n nella variabile x
  • matrici n x m
  • funzioni da f:R→R come esempio di spazio di dimensione infinita

Sottospazi vettoriali:

  • definizione di sottospazio e chiusura ripsetto alle operazioni vettoriali
  • esempi concreti di verifica con calcolo della dimensione e deteminazione di una base

La lezione si è occupata prevalentemente del paragrafo 2.2 delle dispense di P. Favro ed A. Zucco che si trovano sul sito del corso.

In particolar modo è importante sapere verificare se

  • dati un insieme di vettori essi siano o meno indipendenti;
  • dato un sottoinsieme di uno spazio vettoriale esso sia o meno un sottospazio vettoriale;

Seconda lezione - 3 ottobre

Somma di sottospazi Y,Z di X

  • l'unione Y∪Z non e' in generale un sottospazio di X
  • Y+Z come minimo sottospazio contenente Y∪Z
  • consistenza di Y∩Z ed unicita' della decomposizione
  • somma diretta di sottospazi

Per questa parte si può fare sempre riferimento al paragrafo 2.2, in particolare a quanto scritto nelle pagine 15-16.

Enti lineari in Rn

  • definizione parametrica di retta
  • equazione cartesiana di una retta nel piano
  • equazione cartesiana di un piano in R3
  • equazione cartesiana di una retta in R3: non unicita'.

Fare riferimento a quanto scritto nei paragrafi 3.1 e 3.2. Per quanto riguarda l'equazione del piano in R^{3}[1].

Terza lezione - 4 ottobre

Enti lineari in Rn:

  • definizione parametrica di piano k-dimensionale
  • iperpiano = piano di codimensione 1
  • esempio di iperpiano in Rm e determinazione della sua equzione cartesiana

Operatori lineari:

  • definizione ed esempi concreti di verifica
  • coniugio nel campo complesso C: R-lineare ma non C-lineare
  • matrice associata al coniugio, rispetto alla base reale {1, i}
  • matrice associata al coniugio, rispetto alla base reale {1, 1+i}

Matrici associate ad un operatore lineare A : X → Y

  • [x]V vettore delle componenti di x rispetto alla base V
  • matrice [A]_{{WV}} associata ad A rispetto alle basi V in X e W in Y
  • ricostruzione dell'azione di A a partire dalla matrice associata: [Ax]_{W}=[A]_{{WV}}[x]_{V}
  • matrice [I]_{{V_{1}V_{2}}} associata all'indentita': matrice del cambio di base
  • cambio delle basi ed effetto sulla matrice associata: [A]_{{W_{2}V_{2}}}=[I]_{{W_{2}W_{1}}}[A]_{{W_{1}V_{1}}}[I]_{{V_{1}V_{2}}}

Quarta lezione - 5 ottobre

Operatori astratti A:X→Y

  • [x]V vettore delle componenti di x rispetto alla base V
  • matrice [A]WV associata ad A rispetto alle basi V in X e W in Y
  • ricostruzione dell'azione di A a partire dalla matrice associata: [Ax]W = [A]WV [x]V
  • matrice [I]V1V2 associata all'indentita': matrice del cambio di base
  • cambio delle basi ed effetto sulla matrice associata: [A] W2V2 = [I] W2W1 [A] W1V1 [I] V1V2

Operatori lineari A : Rn→Rm

  • base canonica E
  • proprieta' notevole della base canonica [x]E = x
  • azione dell'operatore nelle basi canoniche: Ax=[Ax]E = [A]EE [x]E = [A]EE x
  • identificazione operatore-matrice nelle basi canoniche: A=[A]EE
  • esempi di calcolo della matrice rappresentativa in basi non canoniche
  • immagine di un operatore e sua dimensione: rango di ogni matrice rappresentativa
  • nucleo di un operatore e sua dimensione: numero colonne - rango di ogni matrcie rappresentativa
  • caratterizzazione iniettivita'\suriettivita' tramite rango matrice rappresentativa
  • il caso speciale dominio=codominio: iniettivita' equivalente a suriettivita'.