Differenze tra le versioni di "Metodi probabilistici/2007-2008"

Da WikiDsy.
m
Riga 30: Riga 30:
 
** Esponenziale di complessi
 
** Esponenziale di complessi
 
*** Legame con funzione seno e coseno
 
*** Legame con funzione seno e coseno
 +
 +
=== Lezione del giorno 10/3/2008 ===
 +
* Riprendiamo discorso su F di ripartizione
 +
** Proprietà F che portano al concetto di "Assenza di memoria"
 +
** Unicità della soluzione per  G(x+y) = G(x)+G(y) --> G(x) = exp (-<math>\nu</math>x)
 +
** Tempo attesa esponenziale (cfr con legge Poisson)
 +
** Risoluzione primo esercizio CPSM tema di febb
 +
*** Valutazione della derivata della F di ripartizione (in 0 non è definita, i limiti sono diversi)
 +
* Riflessione sulla derivata in <math>\mathbb{C}</math>; è condizione "inifinitamente" stringente poichè vi sono infiniti limiti da valutare (h varia in tutte le oo direzioni in <math>\mathbb{C}</math>)
 +
** derivabile in <math>\mathbb{C}\Leftrightarrow</math> svuiluppabile in serie di potenze
 +
* Introduciamo valore atteso E()
 +
** Linearità, E(1) = 1, associatività e commutatività per le v.c.
 +
** Limitazione di X, |X| <math>\leq</math> c
 +
* Definizione formale dell'algebra sulla quale lavoreremo
 +
**E(A^2) <math>\geq</math> 0 ( = 0 sse A=0)
 +
**<math>\forall A,B \in \mathbb{A}\ \  \exists b \in \mathbb{R}: E(BA^2) \leq bE(A^2) </math>
 +
* Data la struttura <math>\mathbb{A}</math>, esiste uno spazio di probabilità <math>(\Omega, \Sigma, P)</math> tale che <math>\mathbb{A}</math> è isomorfo alla famiglia delle v.c. limitate definite su <math>\Omega</math>, regolari rispetto a <math>\Sigma</math>
 +
* Valore atteso definito come integrale:
 +
<math>E(A) = \int_\Omega a(\omega)dP = \int_\mathbb{R} x \frac{dF}{dx} dx</math>
 +
dove A <-> a tramite l'isomorfismo sopracitato.
 +
* Accenno alla non commutatività dell'algebra
 +
* [http://projecteuclid.org/DPubS/Repository/1.0/Disseminate?view=body&id=pdf_1&handle=euclid.bams/1183526903 Irving Segal - Algebraic Integration Theory] cfr. pag. 430.

Versione delle 10:40, 10 mar 2008


Diario del corso

Lezione del giorno 3/3/2008

  • Introduzione al corso
  • Partendo dal concetto di variabile casuale ripasso di:
    • Funzione, Relazione, Prodotto Cartesiano
  • Ripasso del concetto di funzione di ripartizione
    • Ri-defizione del concetto di funzione di ripartizione come probabilità della controimmagine di una variabile casuale con argomento la semiretta dei reali delimitata da un x segnato
  • Primo approccio al concetto di funzione misurabile (\Sigma -s misurabile, con s semiretta dei Reali {\mathbb  {R}})

Lezione del giorno 7/3/2008

  • Recap del modello Kolmogoroviano (\Omega , \Sigma , P)
  • Proprietà delle funzioni di ripartizione
    • Ripasso del concetto di continuità da dx e sx
    • Data una generica F(x) che gode delle tre proprietà (MGB 67-68) questa è una funzione di ripartizione della quale possiamo definire modello Kolmogoroviano. (Vedi MGB 68-2.3)
  • Concetto di misurabilità partendo da esempi elementari (da CPSM) con distribuzione uniforme in (a,b]
    • Il concetto di misurabilità va ridefinito superando il "vincolo dell'intervallo".
      • Non tutti i sottoinsiemi di una retta R sono intervalli, eppure sono "interessanti".
    • Parallelismo tra Modello Kolmogoroviano e terna ({\mathbb  {R}}, {\mathcal  {B}}({\mathbb  {R}}), P_{X})
    • Prima citazione degli insieme di Borel {\mathcal  {B}}({\mathbb  {R}}).
  • Ripasso del concetto di esponenziale (con naturale estensione al piano complesso)
    • Sistema di 2 equazioni g(0) = 1 , g'(x) = g(x)
      • Ripasso del concetto di derivata come limite del rapporto incrementale
      • Ricerca di una soluzione tra i polinomi
      • Verifica della soluzione \sum _{{n=0}}^{{\infty }}{{\frac  {x^{n}}{n!}}}
      • Verifica della convergenza della serie
    • Definizione formale del numero di Nepero
    • Cenno di dimostrazione sulla proprietà exp(x+y) = exp(x) * exp(y) [utilizzare binomio di Newton]
    • Esponenziale di complessi
      • Legame con funzione seno e coseno

Lezione del giorno 10/3/2008

  • Riprendiamo discorso su F di ripartizione
    • Proprietà F che portano al concetto di "Assenza di memoria"
    • Unicità della soluzione per G(x+y) = G(x)+G(y) --> G(x) = exp (-\nu x)
    • Tempo attesa esponenziale (cfr con legge Poisson)
    • Risoluzione primo esercizio CPSM tema di febb
      • Valutazione della derivata della F di ripartizione (in 0 non è definita, i limiti sono diversi)
  • Riflessione sulla derivata in {\mathbb  {C}}; è condizione "inifinitamente" stringente poichè vi sono infiniti limiti da valutare (h varia in tutte le oo direzioni in {\mathbb  {C}})
    • derivabile in {\mathbb  {C}}\Leftrightarrow svuiluppabile in serie di potenze
  • Introduciamo valore atteso E()
    • Linearità, E(1) = 1, associatività e commutatività per le v.c.
    • Limitazione di X, |X| \leq c
  • Definizione formale dell'algebra sulla quale lavoreremo
    • E(A^2) \geq 0 ( = 0 sse A=0)
    • \forall A,B\in {\mathbb  {A}}\ \ \exists b\in {\mathbb  {R}}:E(BA^{2})\leq bE(A^{2})
  • Data la struttura {\mathbb  {A}}, esiste uno spazio di probabilità (\Omega ,\Sigma ,P) tale che {\mathbb  {A}} è isomorfo alla famiglia delle v.c. limitate definite su \Omega , regolari rispetto a \Sigma
  • Valore atteso definito come integrale:
E(A)=\int _{\Omega }a(\omega )dP=\int _{{\mathbb  {R}}}x{\frac  {dF}{dx}}dx
dove A <-> a tramite l'isomorfismo sopracitato.