Calcolo probabilità e statistica matematica/Esami/2008-01-10

Da WikiDsy.
Versione del 12 gen 2008 alle 13:29 di Lallyblue (discussione | contributi) (Testo soluzione)

Tema d'esame del 10-01-2007

Problemi modellati

  • Generatore di impulsi

Distribuzioni

  • Bernoulli
  • Binomiale
  • Geometrica

Immagine testo

Tema del 10Gen2008

Testo soluzione

ESERCIZIO I

X_{1},X_{2},... sono v.c. bernoulliane indipendenti e identicamente distribuite

P(X_{1}=1)=p con 0<p<1

quindi E(X_{i})=p

  • punto 1)

per la linearita' del valore atteso: E(X_{1}+X_{2}+...+X_{n})=\sum _{{i=1}}^{n}E(X_{i})

e visto che sono identicamente distribuite:

\sum _{{i=1}}^{n}E(X_{i})=n\cdot E(X)=n\cdot p

  • punto 2)

P(X_{1}=0\land X_{2}=0\land ...\land X_{n}=0)=\prod _{{i=1}}^{n}P(X_{i}=0)

visto che

P(X_{i}=0)=1-P(X_{i}=1)=1-p

e che le X sono indipendenti e identicamente distribuite:

\prod _{{i=1}}^{n}P(X_{i}=0)=(1-p)^{n}

  • punto 3)

dal punto precedente abbiamo che:

E(\sum _{{i=1}}^{n}X_{i})=n\cdot p

e che:

\prod _{{i=1}}^{n}P(X_{i}=0)=(1-p)^{n}

    • a) n=1,p={1 \over 3}

{n\cdot p}=1\cdot {1 \over 3}={1 \over 3}

{(1-p)^{n}}=(1-{1 \over 3})^{1}={2 \over 3}

    • b) n=10,p={1 \over 30}

{n\cdot p}=10\cdot {1 \over 30}={1 \over 3}

{{(1-p)^{n}}=(1-{1 \over 30})^{1}0=(29 \over 30)^{1}0=7,12\cdot 10^{(}-1)}

    • c) n=10^{9},p={1 \over {3\cdot 10^{9}}}

{n\cdot p}=10^{9}\cdot {1 \over {3\cdot 10^{9}}}={1 \over 3}

{(1-p)^{n}}=(1-{1 \over {3\cdot 10^{9}}})^{1}0^{9}=7,17\cdot 10^{(}-1)

    • d) n=10^{2}3,p={1 \over {3\cdot 10^{2}3}}

{n\cdot p}=10^{2}3\cdot {1 \over {3\cdot 10^{2}3}}={1 \over 3}

{(1-p)^{n}}=(1-{1 \over {3\cdot 10^{2}3}})^{1}0^{2}3\approx e^{{-{1 \over 3}}}=7,17\cdot 10^{(}-1)


ESERCIZIO II
  • punto 1)
  • punto 2)
  • punto 3)
  • punto 4)


ESERCIZIO III
  • punto 1)
  • punto 2)
  • punto 3)
  • punto 4)
  • punto 5)
  • punto 6)

Domande orale

--