Differenze tra le versioni di "Logica fuzzy"

Da WikiDsy.
(Syntax)
(Aggiunta della definizione di sintassi e semantica)
Riga 11: Riga 11:
 
==Lessons' notes==
 
==Lessons' notes==
 
''This notes are written in english to help foreign students to follow this course.''
 
''This notes are written in english to help foreign students to follow this course.''
==Classical Propositional Logic==
+
===Classical Propositional Logic===
 +
We are going to describe the classical propositional logic (L.P.C) language.
 +
====Syntax====
 +
''The syntax of a language is the set of rules that specify '''how''' the elements of the language are formed regardless their meaning''.
  
===Lesson 1 - 5th october===
 
In this lesson we are going to describe the classical propositional logic (L.P.C) language.
 
====Syntax====
 
 
Let <math>\mathbb{N} = \{1, 2, ... \} </math> be the set of the natural numbers and <math>\mathbb{A} = \{ (, ), X, |, $, \rightarrow, \and, \or, \neg, \top, \bot \}</math> an alphabet of symbols.<br>
 
Let <math>\mathbb{N} = \{1, 2, ... \} </math> be the set of the natural numbers and <math>\mathbb{A} = \{ (, ), X, |, $, \rightarrow, \and, \or, \neg, \top, \bot \}</math> an alphabet of symbols.<br>
 
<math>\mathbb{A}^\star</math> is the set of strings on this alphabet. For example <math>(\top \and \bot) ,  (\neg \and , X(( \in \mathbb{A}^\star</math>.<br>
 
<math>\mathbb{A}^\star</math> is the set of strings on this alphabet. For example <math>(\top \and \bot) ,  (\neg \and , X(( \in \mathbb{A}^\star</math>.<br>
Riga 59: Riga 59:
 
With <math>Var(\alpha)</math> we indicate the set of variables that are subformulas of <math>\alpha</math>.
 
With <math>Var(\alpha)</math> we indicate the set of variables that are subformulas of <math>\alpha</math>.
 
With <math>\alpha(X_1, X_2, .., X_n)</math> we denote a formula whose variables are a '''subset''' of <math>\{X_1, X_2, .., X_n\}</math>.
 
With <math>\alpha(X_1, X_2, .., X_n)</math> we denote a formula whose variables are a '''subset''' of <math>\{X_1, X_2, .., X_n\}</math>.
 +
 +
====Semantic====
 +
''The semantic of a language is the relation between the elements of that language and their '''meaning'''.''<br>
 +
The set {0,1} is called truth values set. '''0 means false and 1 means true'''.
  
 
=== Giudizio sul corso ===
 
=== Giudizio sul corso ===

Versione delle 11:49, 17 ott 2012

Disambigua compass.PNG
Questa è una pagina di introduzione al corso: contiene i turni, le modalità d'insegnamento, alcune informazioni generali ed eventuali giudizi sul corso in questione. Se sei giunto qui passando da un link, puoi tornare indietro e correggerlo in modo che punti direttamente alla voce appropriata.

A.A. passati

Information

Course's website
Times and classrooms:
Monday 15:30 - 17:30 - Room 5 (Ground floor - via comelico 39)
Friday 10:30 - 12:30 - Room 5

Lessons' notes

This notes are written in english to help foreign students to follow this course.

Classical Propositional Logic

We are going to describe the classical propositional logic (L.P.C) language.

Syntax

The syntax of a language is the set of rules that specify how the elements of the language are formed regardless their meaning.

Let {\mathbb  {N}}=\{1,2,...\} be the set of the natural numbers and {\mathbb  {A}}=\{(,),X,|,\$,\rightarrow ,\land ,\lor ,\neg ,\top ,\bot \} an alphabet of symbols.
{\mathbb  {A}}^{\star } is the set of strings on this alphabet. For example (\top \land \bot ),(\neg \land ,X((\in {\mathbb  {A}}^{\star }.
We have now to define the set of the "well formed formula" FORM, that is the set of the elements of the L.P.C.
Definition (well formed formulas). FORM\subset {\mathbb  {A}}^{\star } is defined with some conditions:

  1. \top ,\bot \in FORM
  2. \forall n\in {\mathbb  {N}}
    \qquad X||...|\$\in FORM, where | is taken n times. For example: X|\$,X||\$,X|||\$,....\in FORM
  3. if \alpha ,\beta \in form, then (\neg \alpha )\in FORM.
  4. if \alpha ,\beta \in form, then (\alpha \land \beta )\in FORM.
  5. if \alpha ,\beta \in form, then (\alpha \lor \beta )\in FORM.
  6. if \alpha ,\beta \in form, then (\alpha \rightarrow \beta )\in FORM.

Well formed formulas is often abbreviated with f.b.f. The strings in condition (2) are called "propositional variables" or "atomic formulas" or "propositional letters" or simply "variables". They are abbreviated with this notation: X_{1},X_{2},X_{3},...,X_{n}(In other books p, q, r, .., are used to refer to variables).
The set of variables is VAR.
VAR\subset FORM
Example of well formed formulas:
(((X_{1}\land X_{2})\lor \top )\rightarrow (X_{1}\lor \bot ))\in FORM
Instead
(X_{1}\land \land )\notin FORM
In this notes we omit (, ) where it is clear the precedence of the connectives. (Connectives are \neg ,\land ,\lor ,\rightarrow ,\bot ,\top )
Why don't we use directly X_{1},X_{2},... or p,q,r,s,...?
Because it is important that the alphabet is a finited set. Although, in this notes, we use X_{1},X_{2},...,notation. It is essential, even, that the L.P.C. language is decidability, that is it must exist an algorithm that tell us if a string is \in FORM or not. For this reason it is crucial the
Unique readability of well formed formulas. For all \alpha \in FORMone (and only one) of the following sentences must be true:

  1. \alpha =\bot or \alpha =\top but not both.
  2. Exists an unique n\in {\mathbb  {N}} such that \alpha =X_{n}.
  3. Exists an unique \beta \in FORM such that \alpha =(\neg \beta ).
  4. Exist unique \beta ,\gamma \in FORM such that \alpha =(\beta \land \gamma ).
  5. Exist unique \beta ,\gamma \in FORM such that \alpha =(\beta \lor \gamma ).
  6. Exist unique \beta ,\gamma \in FORM such that \alpha =(\beta \rightarrow \gamma ).

Let's, infact, consider the parser of the algorithm we talked above: When it find, for example, \neg (\alpha \land \beta ), to decide if the string belongs to FORM, it have to decide (for the unique readability of well formed formulas) if \alpha \land \beta \in FORM. But how can it do this? Deciding if \alpha \in FORM and \beta \in FORM. This is what the above theorem tell us. Try to draw the parser tree. It is unique thanks to, again, that theorem.

Formally, a string \alpha is a finite sequence of elements: \alpha =s_{1}s_{2}...s_{n},s_{i}\in {\mathbb  {A}},i\in \{1,..,n\}
A substring of \alpha is a string in the form s_{i}s_{{i+1}}...s_{{i+j}}, where j\in \{0,1,..,n\} and i+j\leq n.
A subformula is a substring \in FORM.
For example: \alpha =(X_{1}\land X_{2})\rightarrow \top
\beta =(X_{1}\land \qquad \gamma =(X_{1}\land X_{2})
\beta ,\gamma are both substring of \alpha but only \gamma is a subformula. With Var(\alpha ) we indicate the set of variables that are subformulas of \alpha . With \alpha (X_{1},X_{2},..,X_{n}) we denote a formula whose variables are a subset of \{X_{1},X_{2},..,X_{n}\}.

Semantic

The semantic of a language is the relation between the elements of that language and their meaning.
The set {0,1} is called truth values set. 0 means false and 1 means true.

Giudizio sul corso

I giudizi di seguito espressi sono il parere personale degli studenti,
e potrebbero non rispecchiare il parere medio dei frequentanti.
Non vi è comunque alcun intento di mettere alla gogna i docenti del corso!
Interesse della materia (da 1 a 5 - aiuto)
____________________
Difficoltà del corso (da 1 a 5 - aiuto)
____________________
Difficoltà del corso per non frequentanti (da 1 a 5 - aiuto)
____________________
Ore di studio richieste (da 1 a 5 - aiuto)
____________________