Differenze tra le versioni di "Aiuto:Prontuario TeX"

Da WikiDsy.
 
m (Voci correlate)
Riga 416: Riga 416:
 
* [http://meta.wikimedia.org/wiki/Help:Formula#Functions.2C_symbols.2C_special_characters sito ufficiale Wikimedia per le Tex]
 
* [http://meta.wikimedia.org/wiki/Help:Formula#Functions.2C_symbols.2C_special_characters sito ufficiale Wikimedia per le Tex]
  
[[categoria:Aiuto|Prontuario TeX]]
+
[[Categoria:Aiuto|Prontuario TeX]][[Categoria:Aiuto|TeX, Prontuario]]

Versione delle 13:29, 6 feb 2006

In questa pagina presentiamo i segni e i costrutti facenti parte del sottolinguaggio TeX/LaTeX che consente l'inserimento di formule matematiche nelle pagine di Wikipedia. Le possibilità sono presentate in ordine alfabetico al fine di facilitare il ritrovamento da parte di chi possegga già qualche conoscenza di TeX, di LaTeX o delle formule per le pagine di Wikipedia.

In questa pagina si intendono anche fornire esempi tendenzialmente significativi, anche al fine di stimolare la omogeneità delle notazioni.


A - B- C - D - E - F - G - I - L - M - N - O - P - Q - R - S - T - V- VARIE


A

accenti e segni diacritici

{\grave  {a}}   \grave{a} {\acute  {e}}   \acute{e}
{\hat  {H}}   \hat{H} {\check  {c}}   \check{c}
{\bar  {{\mathbf  {v}}}}   \bar{\mathbf{v}} {\vec  {{\mathcal  {M}}}}   \vec{\mathcal{M}}
{\dot  {\rho }}   \dot{\rho} {\ddot  {{\mathsf  {X}}}}   \ddot{\mathsf{X}}
{\breve  {o}}   \breve{o} {\tilde  {N}}   \tilde{N}

angoli

15^{\circ }12'38''   15^\circ 12' 38''       A{\hat  B}C   A\hat BC       \widehat {HJK}   \widehat{HJK}       \angle A{\hat  B}C   \angle A\hat BC      \widehat {{\mathbf  {vw}}}   \widehat{\mathbf{vw}}       \angle {\vec  {OA}}{\vec  {OB}}   \angle \vec{OA}\vec{OB}

B

binomiali, coefficienti

{n \choose k}:={\frac  {n!}{k!(n-k)!}}     {n \choose k} := \frac{n!}{k!(n-k)!}

{n \choose k}={n-1 \choose k-1}+{n-1 \choose k}       {n \choose k} = (n-1 \choose k-1} + (n-1 \choose k}

C

calligrafica / fonte : v. fonti speciali

complessi / espressioni per numeri

z=x+iy=\rho e^{{i\theta }}=|z|e^{{i\arg z}}   z = x+iy = \rho e^{i\theta} = |z| e^{i \arg z}       \Re (x+iy)=x   \Re(x+iy) = x       \Im (x+iy)=y   \Im(x+iy) = y      

D

derivate

{d \over dx}f(x)   {d\over dx} f(x)       \nabla \;\partial x\;dx\;{\dot  x}\;{\ddot  y}\psi (x)   \nabla \; \partial x \; dx \; \dot x \; \ddot y \psi(x)       {\partial  \over \partial y}F(x,y)   {\partial \over \partial y} F(x,y)

determinanti

\det \left[{\frac  {\partial }{\partial x_{i}}}{\frac  {\partial }{\partial x_{j}}}\,|\,1\leq i,j\leq n\right]

\det\left[ \frac{\partial}{\partial x_i}\frac{\partial}{\partial x_j} \,|\, 1\leq i,j\leq n \right]

{\begin{vmatrix}1&1&1&1\\1&2&3&4\\1&3&6&10\\1&4&10&20\end{vmatrix}}=1

\begin{vmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & 3 & 4 \\ 1 & 3 & 6 & 10 \\ 1 & 4 & 10 & 20 \end{vmatrix} = 1

disponibili / segni

\heartsuit   \heartsuit \spadesuit   \spadesuit \clubsuit   \clubsuit \diamondsuit   \diamondsuit
\imath   \imath \ell   \ell \wp   \wp \mho   \mho
\flat   \flat \natural   \natural \sharp   \sharp {\mathcal  {x}}   \mathcal{x}
\top   \top \bot   \bot \Box   \Box \Diamond   \Diamond

E

ebraiche / lettere       \aleph   \aleph       \beth \beth       \gimel \gimel       \daleth\daleth

entità particolari

\emptyset   \empty \infty   \infty \hbar   \hbar
\mathbb{N}   \N \mathbb{R}   \R

esponenziali

10^{a+b}   10^{{a+b}}       \,10^{a+b}\,   \,10^{{a+b}}\,       e^{-x^2}   e^{{-x^{2}}}       {{4^{4}}^{4}}^{4}   {{4^4}^4}^4       {{{5^{5}}^{5}}^{5}}^{5}   {{{5^5}^5}^5}^5

F

fonti / confronto

{\mathcal  {CALLIGRAFICA}}   \mathcal{CALLIGRAFICA}

Corsivo\ {\mathit  {(Italic)}}   Corsivo\ \mathrm{(Italic)

{\mathfrak  {fraktur\ minuscolo}}   \mathfrak{fraktur\ minuscolo

{\mathfrak  {FRAKTUR\ MAIUSCOLO}}   \mathfrak{FRAKTUR\ MAIUSCOLO}

{\mathbf  {Grassetto(boldface)}}   \mathbf{Grassetto (boldface)}

{\mathrm  {Normale\ (Roman)}}   \mathrm{Normale\ (Roman)


{\mathsf  {Sans\ Serif}}   \mathbb{Sans\ Serif}

{\mathbb  {STILE\ LAVAGNA}}   \mathbb{STILE\ LAVAGNA}


fraktur / fonte

{\mathfrak  {abcdefghijklm}}{\mathfrak  {nopqrstuvwxyz}}   \mathfrak{abcdefghijklm} \mathfrak{nopqrstuvwxyz}

{\mathfrak  {ABCDEFGHIJKLM}}{\mathfrak  {NOPQRSTUVWXYZ}}   \mathfrak{ABCDEFGHIJKLM} \mathfrak{NOPQRSTUVWXYZ}

frazioni

{a\over b}   {a \over b}       \frac{x+a}{x^2-2x+5}   {\frac  {x+a}{x^{2}-2x+5}}

frecce

\leftarrow   \leftarrow \rightarrow   \rightarrow \uparrow   \uparrow
\longleftarrow   \longleftarrow \longrightarrow   \longrightarrow \downarrow   \downarrow
\Leftarrow   \Leftarrow \Rightarrow   \Rightarrow \Uparrow   \Uparrow
\Longleftarrow   \Longleftarrow \Longrightarrow   \Longrightarrow \Downarrow   \Downarrow
\leftrightarrow   \leftrightarrow \updownarrow   \updownarrow
\Leftrightarrow   \Leftrightarrow \Longleftrightarrow   \Longleftrightarrow \Updownarrow   \Updownarrow
\to   \to \mapsto   \mapsto \longmapsto   \longmapsto
\hookleftarrow   \hookleftarrow \hookrightarrow   \hookrightarrow \nearrow   \nearrow
\searrow   \searrow \swarrow   \swarrow \nwarrow   \nwarrow

funzioni standard / simboli per le

\arccos \cos \csc \exp \ker \limsup \min \sinh
\arcsin \cosh \deg \gcd \lg \ln \Pr \sup
\arctan \cot \det \hom \lim \log \sec \tan
\arg \coth \dim \inf \liminf \max \sin \tanh

G

geometria / simboli per la

\triangle   \triangle             \angle   \angle      

grassetto / caratteri in

lettere normali \mathbf{x}, \mathbf{y}, \mathbf{Z} {\mathbf  {x}},{\mathbf  {y}},{\mathbf  {Z}}
lettere greche \boldsymbol{\alpha}, \boldsymbol{\beta}, \boldsymbol{\gamma} {\boldsymbol  {\alpha }},{\boldsymbol  {\beta }},{\boldsymbol  {\gamma }}

greche / lettere

\alpha , \alpha \vartheta , \vartheta \varpi , \varpi \chi , \chi \Eta , \mathrm{H} \Pi , \Pi
\beta , \beta \iota , \iota \rho , \rho \psi , \psi \Theta , \Theta \Rho , \mathrm{P}
\gamma , \gamma \kappa , \kappa \varrho , \varrho \omega , \omega \Iota , \mathrm{I} \Sigma , \Sigma
\delta , \delta \lambda , \lambda \sigma , \sigma \Alpha , \mathrm{A} \Kappa , \mathrm{K} \Tau , \mathrm{T}
\epsilon , \epsilon \mu , \mu \varsigma , \varsigma \Beta , \mathrm{B} \Lambda , \Lambda \Upsilon , \Upsilon
\varepsilon , \varepsilon \nu , \nu \tau , \tau \Gamma , \Gamma \Mu , \mathrm{M} \Phi , \Phi
\zeta , \zeta \xi , \xi \upsilon , \upsilon \Delta , \Delta \Nu , \mathrm{N} \Chi , \mathrm{X}
\eta , \eta o (gewoon o) , o \phi , \phi \Epsilon , \mathrm{E} \Xi , \Xi \Psi , \Psi
\theta , \theta \pi , \pi \varphi , \varphi \Zeta , \mathrm{Z} O (gewoon O), O \Omega , \Omega

I

insiemi / espressioni concernenti

f\left(\bigcap _{{i=1}}^{n}S_{i}\right)\subseteq \bigcap _{{i=1}}^{n}f\left(S_{i}\right)   f\left(\bigcap_{i=1}^n S_i\right) \subseteq \bigcap_{i=1}^n f\left(S_i\right)

integrali

\int   \int       \iint   \iint       \iiint   \iiint       \oint   \oint

\int _{{-2\pi }}^{{2\pi }}f(x)dx     \int_{-2\pi}^{2\pi} f(x) dx      

\int _{{-\infty }}^{\infty }dx\;e^{{-(x-m)^{2} \over 2\sigma ^{2}}}g(x)     \int_{-\infty}^\infty dx\;e^{-(x-m)^2\over 2\sigma^2} g(x)

L

limiti

\lim _{{n\to \infty }}x_{n}   \lim_{n \to \infty}x_n

logica

p\land \wedge \;\bigwedge \;{\bar  {q}}\to p\   p \land \wedge \; \bigwedge \; \bar{q} \to p\

lor\vee \;\bigvee \;\lnot \;\neg q\;\setminus \;\smallsetminus   lor \vee \; \bigvee \; \lnot \; \neg q \; \setminus \; \smallsetminus

M

matrici

{\begin{matrix}x&y\\v&w\end{matrix}}     \begin{matrix} x & y \\ v & w \end{matrix}

{\begin{pmatrix}A+B&{B-C \over 2}\\{C-B \over 2}&D\end{pmatrix}}     \begin{pmatrix} A+B & {B+C\over 2} \\ {B+c\over 2} & D \end{pmatrix}

{\begin{vmatrix}1&1&1&1&1\\1&2&3&4&5\\1&3&6&10&15\\1&4&10&20&35\\1&5&15&35&70\end{vmatrix}}     \begin{vmatrix} 1 & 1 & 1 & 1 & 1 \\ 1 & 2 & 3 & 4 & 5 \\ 1 & 3 & 6 & 10 & 15 \\ 1 & 4 & 10 & 20 & 35 \\ 1 & 5 & 15 & 35 & 70 \end{vmatrix}

{\begin{Vmatrix}x&y\\v&w\end{Vmatrix}}     \begin{Vmatrix} x & y \\ v & w \end{Vmatrix}


{\begin{bmatrix}M_{{1,1}}&M_{{1,2}}&M_{{1,3}}\\M_{{2,1}}&M_{{2,2}}&M_{{2,3}}\end{bmatrix}}     \begin{bmatrix} M_{1,1}&M_{1,2}&M_{1,3}\\M_{2,1}&M_{2,2}&M_{2,3} \end{bmatrix}

{\begin{Bmatrix}\cos \theta &\sin \theta \\-\sin \theta &\cos \theta \end{Bmatrix}}     \begin{Bmatrix}\cos\theta&\sin\theta\\-\sin\theta&\cos\theta\end{Bmatrix}

{\begin{vmatrix}{\begin{bmatrix}x&y\\v&w\end{bmatrix}}&{\begin{bmatrix}a\\b\end{bmatrix}}\\{\begin{bmatrix}a&b\end{bmatrix}}&[1]\end{vmatrix}}     \begin{vmatrix} \begin{bmatrix} x & y \\ v & w \end{bmatrix} & \begin{bmatrix} a \\ b \end{bmatrix} \\ \begin{bmatrix} a & b \end{bmatrix} & [1] \end{vmatrix}

{\begin{bmatrix}x_{{11}}&x_{{12}}&\cdots &x_{{1n}}\\x_{{21}}&x_{{22}}&\cdots &x_{{2n}}\\\vdots &\vdots &\ddots &\vdots \\x_{{m1}}&x_{{m2}}&\cdots &x_{{mn}}\end{bmatrix}}     \begin{bmatrix} x_{11}&x_{12}&\cdots&x_{1n} \\ x_{21}&x_{22}&\cdots&x_{2n} \\ \vdots&\vdots&\ddots&\vdots \\ x_{m1}&x_{m2}&\cdots& x_{mn} \end{bmatrix}


moduli

s_{k}\equiv 0{\pmod  {m}} s_k \equiv 0 \pmod{m}

a{\bmod  b} a \bmod b

N

negazione di relazioni si ottiene premettendo la macro \not

\not\leq   \not \leq )       \not\sim \not \sim       \not\models   \not \models       \not=   \not =       \not<   \not < . . . .

neretto / caratteri in v. grassetto / caratteri in

O

operatori binari

\pm   \pm \triangleright   \triangleright \setminus   \setminus \circ   \circ
\mp   \mp \times   \times \bullet   \bullet \star   \star
\vee   \vee \wr   \wr \ddagger   \ddagger \cap   \cap
\dagger   \dagger \oplus   \oplus \smallsetminus   \smallsetminus \cdot   \cdot
\wedge   \wedge \otimes   \otimes \cup   \cup \triangleleft   \triangleleft
{\mathcal  {t}}   \mathcal{t} {\mathcal  {u}}   \mathcal{u}

operatori n-ari (v.a. produttoria, sommatoria)

\sum   \sum \prod   \prod \coprod   \coprod
\bigcap   \bigcap \bigcup   \bigcup \biguplus   \biguplus
\bigodot   \bigodot \bigoplus   \bigoplus \bigotimes   \bigotimes
\bigsqcup   \bigsqcup \bigvee   \bigvee \bigwedge   \bigwedge

operatori unari

\nabla   \nabla       \partial   \partial       \neg   \neg       \sim   \sim

P

parentesi

(...)   (...) [...]   [...] \{...\}   \{...\}
|...|   |...| \|...\|   \|...\| \langle   \langle \rangle   \rangle
\lfloor   \lfloor \rfloor   \rfloor \lceil   \lceil \rceil   \rceil

parentesi adattabili

\left(x^{2}+2bx+c\right)   \left(x^2+2bx+c\right)

\cos \left(\int _{0}^{\pi }dx\;e^{{-x}}P_{{2k}}(x)\right)   \cos\left(\int_0^\pi dx\;e^{-x} P_{2k}(x)\right)

produttoria

\prod _{{k=1}}^{3}K_{{k+4}}=K_{5}\cdot K_{6}\cdot K_{7}   \prod_{k=1}^3 K_{k+4} = K_5\cdot K_6\cdot K_7

puntini       \ldots   \ldots       \cdots   \cdots       \vdots   \vdots       \ddots   \ddots (v.a. matrici)

Q

quantificatori       \forall   \forall       \exists   \exists

\forall _{{i\in \mathbb{N} ,j\in \mathbb{N} \setminus \{0\}}}(i/j\in {\mathbb  {Q}})     \forall_{i \in \N, j \in \N \setminus \{0\}} (i/j \in \mathbb{Q})

\exists {\mathbf  {x}}\in {\mathbb  {K}}^{n}~{\mbox{tale che}}~{\mathcal  {M}}{\mathbf  {x}}={\mathbf  {v}}

\mathbf{x} \in \mathbb{K}^n \ \mbox{tale che}\ \mathcal{M} \mathbf{x} = \mathbf{v}

R

radici

{\sqrt  7}       \sqrt 7             {\sqrt  {2\pi \rho }}       \sqrt{2\pi\rho}

{\sqrt  {A^{2}+B^{2}+C^{2}}}   \sqrt{A^2+B^2+C^2}

x_{{1,2}}={\frac  {-b\pm {\sqrt  {b^{-}4ac}}}{2a}}   x_{1,2} = \frac{-b\pm\sqrt{b^-4ac}}{2a}

{\sqrt[ {3}]3}       \sqrt[3]3             {\sqrt[ {h+k}]{a\pm \sin(2k\pi )}}             \sqrt[h+k]{ a\pm\sin(2k\pi)} }

raggruppamenti di simboli

\overline {f\circ g\circ h}   \overline{f\circ g\circ h} \underline {{\mbox{esatto}}}   \underline{\mbox{esatto}}
\overleftarrow {HK}   \overleftarrow{HK} \overrightarrow {PQ}   \overrightarrow{PQ}
\overbrace {x_{1}x_{2}\cdots x_{n}}   \overbrace{x_1x_2\cdots x_n} \underbrace {\alpha \beta \gamma \delta }   \underbrace{\alpha\beta\gamma\delta}
{\sqrt  {A^{2}+B^{2}}}   \sqrt{A^2+B^2} {\sqrt[ {3}]{p^{3}-{qr \over 3}}}   \sqrt[n]{p^3-{qr\over3}}
\widehat {ABC}   \widehat{ABC}

\overbrace {\overline {F\circ G}}   \overbrace{\overline{F\circ G}}

\widehat {\overline {\overline {F\circ G}}}   \widehat{\overline{\overline{F\circ G}}}

relazioni

\,<\,   \,<\, \leq   \leq \,>\,   \,>\, \geq   \geq
\subset   \subset \subseteq   \subseteq \supset   \supset \supseteq   \supseteq
\in   \in \ni   \ni \vdash   \vdash {\mathcal  {a}}   \mathcal{a}
\cong   \cong \simeq   \simeq \approx   \approx \sim   \sim
\perp   \perp \|   \| \mid   \mid \equiv   \equiv
\frown   \frown \smile   \smile \triangleleft   \triangleleft \triangleright   \triangleright
{\mathcal  {v}}   \mathcal{v} {\mathcal  {w}}   \mathcal{w} \models   \models

S

sans serif / fonte

{\mathsf  {abcdefghijklm}}{\mathsf  {nopqrstuvwxyz}}   \mathsf{abcdefghijklm} \mathsf{nopqrstuvwxyz}

{\mathsf  {ABCDEFGHIJKLM}}{\mathsf  {NOPQRSTUVWXYZ}}   \mathsf{ABCDEFGHIJKLM} \mathsf{NOPQRSTUVWXYZ}

sistemi di equazioni

\left\{{\begin{matrix}ax+by=h\\cx+dy=k\end{matrix}}\right.     \left{\begin{matrix}ax+by=h \\ cx+dy=k\end{matrix}\right.

sommatoria

\sum _{{k=1}}^{n}k^{2}       \sum_{k=1}^n k^2

T

tensori e simili

g_{i}^{{\ j}}   g_i^{\ j}       S_{{r_{1}r_{2}}}^{{\ \ \ \ r_{3}r_{4}}}   S_{r_1r_2}^{\ \ \ \ r_3r_4}       T_{{\ j\ k}}^{{i\ h}}   T_{\ j\ k}^{i\ h}

{}_{1}^{2}\!X_{3}^{4}   {}_1^2\!X_3^4

V

vettori

{\mathbf  {r}}=\langle x_{1},x_{2},x_{3}\rangle       \mathbf{r}=\langle x_1,x_2,x_3\rangle

{\mathbf  {e}}_{i}:=\langle j=1,...,n:|\delta _{{i,j}}\rangle   \mathbf{e}_i :\!= \langle j=1,...,n :| \delta_{i,j} \rangle


VARIE

100\,^{{\circ }}{\mathrm  {C}}   100\,^{\circ}\mathrm{C}

\left.{A \over B}\right\}\to X   \left. {A \over B} \right\} \to X

Voci correlate