Calcolo probabilità e statistica matematica
Questa è una pagina di introduzione al corso: contiene i turni, le modalità d'insegnamento, alcune informazioni generali ed eventuali giudizi sul corso in questione. Se sei giunto qui passando da un link, puoi tornare indietro e correggerlo in modo che punti direttamente alla voce appropriata. |
Turni
A.A. passati
Informazioni
Corso del primo semestre, il superamento di quest'esame da diritto a 6 CFU.
- Docente: Bruno Apolloni
- Url del corso [1]
Obiettivi del corso
Fornire gli elementi di base per la costruzione di modelli probabilistici e per l’analisi statistica di fenomeni aleatori.
Modalità d'esame
- Scritto
- Orale
Propedeuticità consigliate e prerequisiti
- Istituzioni matematiche
- Rudimenti di insiemistica e di calcolo differenziale ed integrale.
Programma del corso
- Legame tra conoscenza e aleatorietà
- Proprietà corrette su insiemi di dati incerti
- Misure di probabilità
- Elementi di calcolo combinatorio
- Variabili aleatorie
- Da uno a più bit per definire una variabile
- Aggregati di variabili aleatorie
- Funzioni di variabili aleatorie
- Teoremi limiti
- Inferenza statistica
- L’approccio predittivo
- Intervalli di confidenza
- Stimatori puntuali
- Test di ipotesi
Metodi didattici
Il corso si articola attraverso lezioni teoriche volte spiegare i ragionamenti alla base della modellistica probabilistica e dell’inferenza statistica ed esercitazioni nelle quali a questi ragionamenti si da un riscontro operativo, in termini di regole ed algoritmi per definire quantitativamente decisioni in ambito incerto.
Giudizio sul corso
I giudizi di seguito espressi sono il parere personale degli studenti, e potrebbero non rispecchiare il parere medio dei frequentanti. Non vi è comunque alcun intento di mettere alla gogna i docenti del corso!
Interesse della materia (da 1 a 5 - aiuto)
_3___________________Difficoltà del corso (da 1 a 5 - aiuto)
_5___________________Difficoltà del corso per non frequentanti (da 1 a 5 - aiuto)
_5___________________Ore di studio richieste (da 1 a 5 - aiuto)
_5___________________Diario del corso
Lezioni fino al 6/11/06 compreso
Le trovate a questo link.
Lezione del 10/11/06
- Errore quadratico medio (MSE)
- Definizioni "formali" (come da Mood) di valore atteso e varianza
- Forma più generale della disuguaglianza di Tchebycheff
- Valutazione del valore atteso di Sm/m
- MSE(Sm/m) = var(Sm/m) con dimostrazione
- var(aZ) = a^2 * var(Z) con dimostrazione
- Valutazione della var(Sm)
- p stimatore non distorto di E(Sm/m)
Lezione del 13/11/06
- Altre considerazioni sulla dis. di Tcheycheff alla luce del fatto che var(Sm/m) = 1/m^2 * var(Sm)
- Valutazione di var(Z+W) --> cov(Z,W)
- Per var. cas. bernoulliane, var(Z) = pq (dimostrazione)
- In generale: cov(Z,W) = E(Z*W) - E(Z)*E(W)
- Nel caso di estr. con reimmissione --> cov(Z,W) = 0
- Nel caso di estr. senza reimmissione --> cov(Z,W) = b/n*((b-1)/(n-1)*(b/n))