Calcolo probabilità e statistica matematica
Questa è una pagina di introduzione al corso: contiene i turni, le modalità d'insegnamento, alcune informazioni generali ed eventuali giudizi sul corso in questione. Se sei giunto qui passando da un link, puoi tornare indietro e correggerlo in modo che punti direttamente alla voce appropriata. |
Turni
A.A. passati
Informazioni
Corso del primo semestre, il superamento di quest'esame da diritto a 6 CFU.
- Docente: Bruno Apolloni
- Url del corso [1]
Obiettivi del corso
Fornire gli elementi di base per la costruzione di modelli probabilistici e per l’analisi statistica di fenomeni aleatori.
Modalità d'esame
- Scritto
- Orale
Propedeuticità consigliate e prerequisiti
- Istituzioni matematiche
- Rudimenti di insiemistica e di calcolo differenziale ed integrale.
Programma del corso
- Legame tra conoscenza e aleatorietà
- Proprietà corrette su insiemi di dati incerti
- Misure di probabilità
- Elementi di calcolo combinatorio
- Variabili aleatorie
- Da uno a più bit per definire una variabile
- Aggregati di variabili aleatorie
- Funzioni di variabili aleatorie
- Teoremi limiti
- Inferenza statistica
- L’approccio predittivo
- Intervalli di confidenza
- Stimatori puntuali
- Test di ipotesi
Metodi didattici
Il corso si articola attraverso lezioni teoriche volte spiegare i ragionamenti alla base della modellistica probabilistica e dell’inferenza statistica ed esercitazioni nelle quali a questi ragionamenti si da un riscontro operativo, in termini di regole ed algoritmi per definire quantitativamente decisioni in ambito incerto.
Giudizio sul corso
I giudizi di seguito espressi sono il parere personale degli studenti, e potrebbero non rispecchiare il parere medio dei frequentanti. Non vi è comunque alcun intento di mettere alla gogna i docenti del corso!
Interesse della materia (da 1 a 5 - aiuto)
_3___________________Difficoltà del corso (da 1 a 5 - aiuto)
_5___________________Difficoltà del corso per non frequentanti (da 1 a 5 - aiuto)
_5___________________Ore di studio richieste (da 1 a 5 - aiuto)
_5___________________Diario del corso
Lezioni fino al 6/11/06 compreso
Le trovate a questo link.
Lezione del 10/11/06
- Errore quadratico medio (MSE)
- Definizioni "formali" (come da Mood) di valore atteso e varianza
- Forma più generale della disuguaglianza di Tchebycheff
- Valutazione del valore atteso di Sm/m
- MSE(Sm/m) = var(Sm/m) con dimostrazione
- var(aZ) = a^2 * var(Z) con dimostrazione
- Valutazione della var(Sm)
- p stimatore non distorto di E(Sm/m)
Lezione del 13/11/06
- Altre considerazioni sulla dis. di Tcheycheff alla luce del fatto che var(Sm/m) = 1/m^2 * var(Sm)
- Valutazione di var(Z+W) --> cov(Z,W)
- Per var. cas. bernoulliane, var(Z) = pq (dimostrazione)
- In generale: cov(Z,W) = E(Z*W) - E(Z)*E(W)
- Nel caso di estr. con reimmissione --> cov(Z,W) = 0
- Nel caso di estr. senza reimmissione --> cov(Z,W) = b/n*((b-1)/(n-1)*(b/n))
Lezione del 20/11/06
- Valutazione di MSE(Sm/m)
- Considerazioni su var(Z) --> grafico, punto di massimo...
- limite all'infinito del primo membro della dis. di Tchebycheff = 1 --> "legge dei grandi numeri"
- Valutazione di varianza e valore atteso per distribuzione binomiale (con reimm) e per distribuzioni senza reimmissione
- confronto dell'andamento dei due tipi di varianza sulla base dei grafici (per valori piccoli rispetto a n/2 le due varianze vanno allo stesso modo)
- cov(Z,W) = ... nel caso di estrazioni con contagio.
- var(Sm/m) nel caso con contagio (andamento per m-->+inf)
- dimostrazione formale che E(Z+W) = E(Z) + E(W)
Lezione del 24/11/06
- "Svolgimento" dell'esercizio IV del tema d'esame del 18/2/04
- Concetto di indipendenza
- Probabilità condizionata (valutazione dei tre casi: con reimm, senza reimm e con contagio)
- Teoremi vari sulla probabilità condizionata
Lezione del 27/11/06
- Teorema: lo "spazio" (Omega, Sigma, Ps)che si viene a creare con la nuova funzione di probabilità condizionata su P è uno spazio di probabilità
- Stima della funzione di probabilità condizionata Ps
LEZIONE INTERROTTA!! Argomenti scritti alla lavagna:
- Regola a catena
- Teorema di Bayes
- Teorema della probabilità totali
Lezione del 1/12/06
Lezione del 4/12/06
- Tempi di attesa (solito esempio dei mezzi pubblici a Milano e a Napoli, "solito" per chi non è la prima volta che frequenta :D)
- P(T > k) ovvero probabilità che avvenga il primo successo dopo la k-esima prova
P(T > 0) = 1 P(T > 1) = 1 - p = q P(T > 2) = q * q = q^2 per induzione P(T > k) = q^k
- Definizione di funzione di ripartizione
- grafico di una funzione di ripartizione (non ho capito quale!)
- P(T = k) = p * q^(k-1) con dimostrazione
- P(T > a+b | T>a) = P(T>b) --> «Convinciamo vostra zia che non conviene puntare sui numeri ritardarari» --> la probabilità di successo dopo a+b prove è uguale alla probabilità dopo b prove, se la variabile casuale gode della "assenza di memoria"
- "Assenza di memoria" --> P(T > k) = P(T > 1)^k